Поддержать команду Зеркала
Беларусы на войне
  1. «Новых не будет». Пропагандист рассказал о политзаключенных, для освобождения которых нужны «особые условия»
  2. В Ельске 12-летняя девочка погибла, принимая ванну с телефоном в руках
  3. Стало известно, почему глава МИД Рыженков не полетел в Вашингтон — ему не дали визу
  4. Статкевич вышел на свободу. У него был инсульт
  5. После потери доступа к терминалам Starlink Россия изменила схему применения дронов — ISW
  6. Популярная туристическая страна может перестать быть безвизовой для беларусов уже в 2026 году
  7. В Минске строят ЦИП вдвое больше Окрестина. На это потратят десятки миллионов рублей
  8. Делегация официального Минска вышла из зала во время речи Тихановской на заседании ПА ОБСЕ в Вене, Азербайджан этот демарш не поддержал
  9. До 15 лет лишения свободы. Юрист объяснил, почему слова Эйсмонт о Статкевиче могут повлечь уголовные дела против Лукашенко
  10. Почему повестка на военные сборы часто приходит прямо перед явкой в военкомат? В Минобороны объяснили
  11. У беларуски погиб на рабочем месте единственный сын. Она потребовала от его работодателя 1 млн рублей компенсации, сколько назначил суд
  12. На свободу по помилованию вышла беременная политзаключенная Наталья Левая
  13. «Попался как щука в невод». Аналитик о том, почему не сработала замена Лукашенко на Рыженкова для участия в «Совете мира»


/

Австралийские ученые разработали принципиально новый подход к борьбе с опасными бактериями, устойчивыми к антибиотикам. Исследователи создали антитела, которые распознают и атакуют особый сахар, присутствующий исключительно на поверхности бактериальных клеток. Открытие может стать основой нового поколения иммунных препаратов против внутрибольничных инфекций, не поддающихся лечению традиционными лекарствами, пишет ScienceDaily.

Изображение носит иллюстративный характер. Фото: Pixabay.com
Изображение носит иллюстративный характер. Фото: pixabay.com

В ходе экспериментов лабораторно созданное антитело смогло полностью устранить смертельную бактериальную инфекцию у мышей. Механизм действия основан на точечном связывании с уникальным бактериальным сахаром, после чего иммунная система получает сигнал на уничтожение патогена.

Ключевой мишенью стал сахар под названием псевдаминовая кислота. Он похож на некоторые сахара человеческих клеток, но вырабатывается исключительно бактериями. Многие опасные патогены используют его как элемент внешней оболочки, что помогает им выживать и уклоняться от иммунного ответа.

Именно отсутствие этого сахара в организме человека делает его идеальной терапевтической целью: антитела могут атаковать бактерии, не повреждая здоровые ткани.

Чтобы использовать эту уязвимость, ученые полностью синтезировали бактериальный сахар и связанные с ним пептиды в лабораторных условиях. Это позволило точно определить их пространственную структуру и понять, как они располагаются на поверхности бактерий.

На основе этих данных команда создала так называемое пан-специфическое антитело — оно способно распознавать один и тот же сахар у разных видов и штаммов бактерий.

В экспериментах на животных антитело успешно уничтожало мультирезистентную бактерию Acinetobacter baumannii — одного из самых опасных возбудителей внутрибольничных пневмоний и инфекций крови, часто устойчивого даже к антибиотикам последней линии.

Пассивная иммунотерапия предполагает введение готовых антител, которые начинают действовать сразу, не дожидаясь реакции собственной иммунной системы пациента. Такой подход может применяться как для лечения уже развившейся инфекции, так и для профилактики.

В условиях стационаров метод может быть особенно полезен для защиты пациентов в реанимациях и отделениях интенсивной терапии — там риск заражения устойчивыми бактериями наиболее высок.

В течение ближайших пяти лет команда планирует довести разработку до стадии клинических испытаний, сосредоточив усилия на лечении инфекций, вызванных Acinetobacter baumannii. Успех этого проекта может стать серьезным прорывом в борьбе с антимикробной резистентностью и устранить одного из наиболее опасных представителей группы патогенов ESKAPE.

Результаты исследования опубликованы в журнале Nature Chemical Biology.